Multiplicity of Positive Solutions for Weighted Quasilinear Elliptic Equations Involving Critical Hardy-Sobolev Exponents and Concave-Convex Nonlinearities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Positive Solutions for Weighted Quasilinear Elliptic Equations Involving Critical Hardy-Sobolev Exponents and Concave-Convex Nonlinearities

and Applied Analysis 3 When a 0, we set s dp∗ 0, d and t bp∗ 0, b , then 1.1 is equivalent to the following quasilinear elliptic equations: −div ( |∇u|p−2∇u ) − μ |u| p−2u |x| |u|p t −2u |x| λ |u|q−2u |x| in Ω, u 0 on ∂Ω, 1.7 where λ > 0, 1 < p < N, 0 ≤ μ < μ N − p /p , 0 ≤ s, t < p, 1 ≤ q < p and p∗ t p N − t / N − p . Such kind of problem relative with 1.7 has been extensively studied by many...

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

On Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents

This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...

متن کامل

Multiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents

where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...

متن کامل

Multiple positive solutions for a class of quasi-linear elliptic equations involving concave-convex nonlinearities and Hardy terms

where Ω ⊂ R is a smooth domain with smooth boundary ∂Ω such that 0 Î Ω, Δpu = div(|∇u|∇u), 1 < p < N, μ < μ̄ = ( N−p p ), l >0, 1 < q < p, sign-changing weight functions f and g are continuous functions on ̄, μ̄ = ( N−p p ) p is the best Hardy constant and p∗ = Np N−p is the critical Sobolev exponent. By extracting the Palais-Smale sequence in the Nehari manifold, the multiplicity of positive solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2012

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2012/579481